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Abstract

We explore the Bistability of quantum states for a coupled cavity with the magnonic system in
presence of Kerr-nonlinearity. The magnonic system is strongly coupled with the photonic cavity system.
We observe the bistable behaviour for both photonic and magnonic systemin presence of a driving
source. Surprisingly we achieve Sharpe bistable frequency when the coupling strength between photon
and magnon is tune. This study opens a new window to designing optical switches and optical flip-flops
in quantum communication technology.
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1 Introduction

In applied quantum physics, Quantum communica-
tion is strongly correlated to quantum information
processing and quantum telecommunication. Quan-
tum communication is more secure to protect data
and data transferring from one place to another.
Quantum processing [1] and quantum internet [2]
are needed to achieve quantum communication. The
optomechanical cavity system is the only helpful
tool to overcome quantum communication. Recently
magnonic systems take a part to design many com-
ponents [3, 4, 5, 6, 7, 8] related to quantum commu-
nication. The cavity system is coupled in a magnonic
system strongly or ultrastrongly [9, 10, 11]. In re-
cent several magnonic cavity systems demonstrate
theoretically [12, 13] and experimentally [14, 15, 16].
Now a day’s quantum information processing is de-
veloped by microwave Photons [17] Optical Photons
[18] Phonons [19] under strong correlations between
magnons and cavity photons in a Hybrid quantum
system.
To our knowledge, our work has many aspects to
achieve bistability in Nonlinear Optics. Also, this
study covers many parts to enhance nonlinear phe-
nomena, Bistability is the fundamental study and it
has many potential applications in optical switching
devices and design memories.
This paper’s design is as follows: in section 1 we dis-
cussed the model and different parts of our model. In
section 2 we numerically solve our system Hamilto-

nian by using different decay or noise fluctuation. In
this section, we also discussed the numerical results
of Bistability. In section 3 we discussed our results
with the help of different experimental results. At
last, we discussed the Conclusion of this study.

2 The Model

The cavity Magnonic system represented by the
Hamiltonian (taking h̄ = 1)[9, 10]
H=ωa a∗ a+ωm m∗ m+ ζ m∗ mm∗ m+ gm (a∗ m+
am∗ ) + Ω(m∗ e−iωd t +meiωd t)——-1
The first part of this Hamiltonian represents cavity
Photons and a∗(a) represents the creation (anni-
hilation) operator of photons with a frequency ωa.
The second part of this Hamiltonian represents the
Magnonic system and m∗(m) represents the creation
(annihilation) operator of Magnons with frequency
ωm. The third term represents a magnon nonlinear
term. Where ζ = µoγ

M2Vm
µo is magnetic permeabil-

ity, γ gyromagnetic ratio, M saturation magnetiza-
tion, Vm The volume of the magnetic cavity. The
fourth term represents the coupling between photon
with magnon, where gm is the coupling strength.The
last term represents as driving term, where Ω is
the strength of the laser source, which is equal to√

κP/h̄ωc with P and κ being the drive laser power
and the cavity damping rate, ωc probe field frequency
and ωd drive field frequency. . In the rotating frame
with the drive frequency ωc the interaction Hamilto-
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nian has the form
H = ∆aa

∗a + ∆mm∗m + ζm∗mm∗m + g(ma∗m +
am∗) + Ω(m∗e−idt +meidt)——2
Where ∆a = ωa − ωc, ∆m = ωm − ωc, ∆d = ωd − ωc

we derive the coupled equations for the macroscopic
fields ā , m̄. Using the corresponding damping and
noise term, the Heisenberg equations are

˙a = −(κa +i∆a)a+ igmm+
√

2κaain(t)—3
˙m = −(κm + i∆m)m + iζm∗mm + igma +

e−i∆pt+
√

2κmmin(t)——–4
In the above equation κa , κm denote the decay rates
of photon Magnon respectively. ain(t), min(t), de-
scribe the corresponding environmental noise with
zero mean values. < ain > = < min > = 0——
-5 This nonlinear equation is linearized by using a
steady-state classical mean value with fluctuating
quantum part a = ās + δ a,m = m̄s + δ m

The steady-state solutions in absence of probe
field of equations (3)-(6) give the following results
as = gmms/(a+i∆a)———6
ms = Ω+ igmas/κm + i∆m − iζ|ms|2—–7

Where as and ms are the steady-state solution
of a and m respectively. From these solutions, we
can obtain steady-state magnon |ms|2 and Photon

number |as|
2
. Which are strongly coupled with each

other. The stability conditions are solved by applying
the Routh-Hurwitz criterion [20] and the eigenvalues
of the Langevin equations have negative real parts.
From these results, we observe that the magnon num-
ber and photon number for cavity mode are depen-
dent on each other and they can generate a multi-
stable state. Comparing equations (6) and (7) we get
the non-linear equation that generates the bistable
behavior of this system.

Figure 1: Magnon Density Profile

Figure 2: Magnon density Profile under multi non-
linear coupling

Fig (1-2) Plots of intracavity photon number as
a function of normalized Detuning frequency. ωm =
2π × 10.5 GHz, κa = 6.5 × 106ω, κm = 2.5ω, gm =
5ω g = 1ω, Ω = 10.65MHz,P = 2.0 mW.

3 Conclusion

The intracavity Magnon number shows the “S”
shaped under variation of cavity detuning frequency.
Controlling bistability behaviour have various practi-
cal applications like optical switches and optical flip-
flop (Logic devices) for quantum communications and
information processing. Bistability behaviour tune
by Kerr-type nonlinear term. So by using a differ-
ent set of Kerr terms Bistability behaviour can be
achieved.
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