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Abstract 

We have explored the phonon statistics in a mechanical resonator, which is coupled with Superconducting qubits and driven 

by squeezed light. The quantum nature of a mechanical resonator can be achieved by the phonon blockade mechanism. 

The non-linearity must be very large as compared to the optical mode line width to suppress the unwanted transitions. We 

observe the strong phonon antibuncing effect i.e., unconventional phonon blockade mechanism which relies on close to 

Gaussian states under weak driven squeezed light. By numerical solution of second-order and third-order correlation 

functions, we analyse the Sub-Poissonian phonon statistics. Due to the high nonlinearity of the system and interaction 

strength between superconducting qubits and cavities, the phonon blockade effect is controlled. Here squeezing light is the 

main key that helps for the development of quantum computers, and generates second harmonics. Superconducting qubits 

help to detect the blockade effect by measuring the states. The present mechanism has much more attractive applications 

in optical communication and sensitive measurements such as the detection of gravitational waves or noise-free 

amplifications.  
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1. Introduction 

Phonon blockade is a quantum phenomenon, where the 

system is allowed to emit or absorb a single phonon at a time 

by blocking the simultaneous presence of multiple phonons in 

the system.  Phonons are quantized units of mechanical 

resonators and are generated during the vibration of the 

resonator. The mechanism of phonon blockade is similar 

phenomena of photon blockade or magnon blockade in 

quantum optics and achieved through strong nonlinear 

interaction in an optomechanical system, where a mechanical 

resonator is coupled with an external electromagnetic field. 

When these interactions are strong, then the vibration energy 

levels become asymmetrical, and unfavorable for multiple 

phonons to occupy the same mode simultaneously. Phonon 

blockade in nanomechanical resonators can be realized 

theoretically and experimentally and discussed potential 

applications [1-2]. The entanglement and squeezing of 

mechanical resonators have been discussed by providing 

theoretical recognition of the dynamics of phonon blockade 

[3]. The theoretical background of phonon blockade has been 

discussed by using the interaction between Josephson qubits 

and nanomechanical resonators [4] Phonon blockade has been 

observed in systems:  like quantum dots, where the vibrating 

energy is highly quantized, and the interaction between 

phonons and the electronic states creates a nonlinear response. 

Systems exploring phonon blockade have been extremely 

sensitive to fractional changes in their environment, this theme 

is applicable for high-precision sensing applications. 

2. The model of the system 

.  We consider a Hamiltonian for describing the 

optomechanical system. The system has two micro-cavity as 

depicted in figure-1. One micro-cavity is passive with the 

decay rate 𝜅1that is based on external coupling loss and 

intrinsic loss. Another micro-cavity is active with an actual 

loss rate 𝜅2 that is based on round trip energy gain rate and 

intrinsic rate. The actual loss rate may be positive (loss) or 

negative (gain) depending on the round-trip energy gain. 

Based on gain to loss ratio the optomechanical system behaves 

like a Passive-Passive (𝜅1 and 𝜅2 both are positive) and 

Passive –Active system (𝜅1 is positive and 𝜅2 is negative). To 

observe the phonon blockade mechanism the system is 

Passive-Active. The optical cavity system coupling with a 

mechanical resonator with damping rate 𝛾. The Active cavity 

contains a superconducting two-level atom (a qubit) enclosed 

in a waveguide and coupled with the mechanical resonator. 

Here the Qubit has enhanced the anharmonicity which plays a 

significant role in obtaining phonon blockade. The 
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nonlinearity 𝜒  has arisen by both cavities and it is induced 

indirectly by the linear coupling between the optical system 

and the resonators. The two micro-cavity are coupled through 

the photon tunneling strength 𝑔 that depends upon the 

separation between the micro-cavity. The free Hamiltonian of 

the optomechanical system is 𝐻𝑜 = 𝜔1𝑎1
†𝑎1 + 𝜔2𝑎2

†𝑎2 where 

𝜔1 and 𝜔2 are the resonant frequencies of the two cavities. 

Here 𝑎1
†(𝑎1) and 𝑎2

†(𝑎2) is the photon creation (annihilation) 

operator. One can design the passive micro-cavity with silica 

material without gain medium and dopants. Active micro-

cavity is designed by silica doped with 𝐸𝑟3+ ion. One can 

achieve a 1550 nm band in an active cavity by using a pump 

laser 1460 nm wavelength. The loss rate of the passive system 

is~2𝜋 × 10.7 𝑀𝐻𝑧 , it can be controlled by tuning the 

resonator gap and the coupling Quality factor is ~4.5 × 107. 

The gain rate in the active cavity is ~ − 2𝜋 × 10.7 𝑀𝐻𝑍. The 

photon tunneling strength between the passive and active 

cavity is ~2𝜋 × 5.35 𝑀𝐻𝑧, and for silica glass material the 

Kerr nonlinearity strength is ~2𝜋 × 1.07. The gain-to-loss 

ratio varies from -3 to +3 [5-10]. The Hamiltonian for 

representing the mechanical resonator is  𝐻𝑚 = 𝜔𝑏𝑏†𝑏 where 

𝜔𝑏 is its resonance frequency and 𝑏†(𝑏) is the phonon 

creation(annihilation) operator. In our numerical simulation, 

we assume 𝜔1 − 𝜔2 = 𝜔𝑏, so that cross-coupled relation 

between optical and mechanical modes is achieved. The two-

level quantum system has the ground state |𝑔 > and excited 

state |𝑒 > with transition frequency 𝜔𝑞(order of GHz). The 

qubit Hamiltonian is described as 𝐻𝑞 = 𝜔𝑞𝜎+𝜎−  where 𝜎+ =

|𝑒 >< 𝑔|  (𝜎− = |𝑔 >< 𝑒|) is the atomic raising (lowering) 

operator [11]. Thus the total Hamiltonian [12-13] without 

driving can be given by (ħ = 1) 

𝐻 = 𝜔1𝑎1
†𝑎1 + 𝜔2𝑎2

†𝑎2 + 𝜔𝑏𝑏†𝑏 + 

         𝜔𝑞𝜎+𝜎− + 𝜒(𝑎1
†𝑎1

†𝑎1𝑎1 + 𝑎2
†𝑎2

†𝑎2𝑎2) + 

         𝑔(𝑎2
†𝜎− + 𝑎2𝜎+) + 𝐽(𝑎1

†𝑎2 + 𝑎2
†𝑎2) + 

         𝛤𝑎2
†𝑎2(𝑏† + 𝑏) + 𝜉(𝑏†𝜎− + 𝑏𝜎+)  ……                          (1) 

 

In equation (1) 𝑔 denotes the interaction term between the 

atom and Photons in the active cavity, 𝐽 represents the 

coupling strength between the active and passive cavity, 𝛤 

interaction term between photons in the active cavity with 

phonon, 𝜉 interaction in between phonon and atom. The 

mechanical vibration of the moving mirror coupled with the 

radiation pressure with the cavity field, due to this interaction 

the moving mirror should be cooled, so that it may execute the 

quantum regime condition. This type of interaction has been 

observed in different experimental studies [14-17]. In this 

system Hamiltonian we consider some assumptions first we 

have neglected the environmental effect in the theoretical and 

experimental calculation [18-19] second in the absence of 

decay the total number of photons must be conserved. 

     One phonon can be excited in a nonlinear mechanical 

resonator when it is driven by external laser light. Effective 

phonon interaction induced by the qubit and phonon 

antibunching effect was observed for weak coupling regime 

and controlled detuning between the mechanical resonator and 

the Qubit. Phonon blockade can be tunable under strong and 

weak-driven squeezed light. Phonon blockade can be 

enhanced by controlling different system parameters and the 

strength and phase of the squeezed light. To reduce the 

negative impact on the environment, one can use low-

temperature and high-frequency mechanical resonators (we 

use 5 GHz ). The optical mode (passive cavity) is driven by 

squeezed light of field strength is  Ω. The driven Hamiltonian 

has been designed as  𝐻𝑑1 =
𝑖

2
(𝛺𝑝𝑎1

†2
𝑒−𝑖𝜑𝑒−𝑖𝜔𝑑𝑡 −

𝛺𝑝
∗𝑎1

2𝑒𝑖𝜑𝑒𝑖𝜔𝑑𝑡). The mechanical mode is driven by the weak 

external field with field strength  Ωm  the driven Hamiltonian 

has design as 𝐻𝑑2 = 𝛺𝑚𝑏†𝑒−𝑖𝜔𝑑𝑡 + 𝛺𝑚
∗𝑏𝑒𝑖𝜔𝑑𝑡 . The external 

field strength is maintained { |𝛺𝑝|, |Ωm|} < {𝜅1, 𝛾}, where 

𝜅1and 𝛾 are the damping rates of the optical (passive cavity) 

and mechanical mode. Note that the driving directly the 

passive cavity and also indirectly drives the active cavity 

through the coupling parameter 𝐽 as shown in the figure. So 

𝛺𝑝 (external squeezed light strength) driven to the passive or 

active cavity and 𝛺𝑚 driven the mechanical resonator. The 

involvement of an additional nonlinearity in the optical mode 

or applying drives to the qubit and the mechanical resonator 

enables to achievement of strong phonon antibunching and 

more sub-Poissonian statistics. 

 

Fig. 1: Represents the two cavities one is active another is passive 

which is coupled with a Mechanical Resonator. The active cavity 

contains a semiconducting qubit. The passive cavity is excited by 

external squeezed light of frequency 𝛺𝑝 . 

 

3. Results and discussion 

    In this paper, we analyse the numerical simulation of the 

Phonon Blockade mechanism [Fig-2, Fig-3] for an 

optomechanical system described by the Hamiltonian. 

Effective phonon interaction induced by the qubit and phonon 

antibunching effect was observed for weak coupling regime 

and controlled detuning between the mechanical resonator and 
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the Qubit. Phonon blockade can be tunable under strong and 

weak-driven squeezed light. Phonon blockade can be 

enhanced by controlling different system parameters and the 

strength and phase of the squeezed light. To reduce the 

negative impact on the environment, we have to use low 

temperature and high frequency of mechanical frequency (we 

use 5 GHz). So optimal phonon blockade appears near zero 

detuning and agrees with the analytical result. 

 

Fig. 2 

 

Fig. 3 

4. Conclusion 

      In conclusion, we have discussed the phonon statistics in 

a mechanical resonator, which is coupled with 

Superconducting qubits and driven by squeezed light. The 

quantum nature of a mechanical resonator can be achieved by 

the phonon blockade mechanism. The non-linearity must be 

very large as compared to the optical mode line width to 

suppress the unwanted transitions. We observe the strong 

phonon antibuncing effect i.e., unconventional phonon 

blockade mechanism which relies on close to Gaussian states 

under weak driven squeezed light. By numerical solution of 

second-order correlation functions, we analyze the Sub-

Poissonian phonon statistics. We can control phonon blockade 

effects by controlling the amplitude and phase of driven 

squeezed light. Due to the high nonlinearity of the system and 

interaction strength between superconducting qubits and 

cavities, the phonon blockade effect is controlled. The present 

mechanism has much more attractive applications in optical 

communication and sensitive measurements such as the 

detection of gravitational waves or noise-free amplifications 

and use for the development of quantum computers, and 

generates second harmonics. 
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